Water Level Trends & Consumptive Use on the R9 Ranch

WATER PACK CONSULTANT PRESENTATION
ANDREW KELLER, PHD, P.E. – KELLER-BLIESNER ENGINEERING, LLC
HAYS-DWR PUBLIC MEETING JUNE 21, 2018 – GREENSBURG, KANSAS

Water Level Trends & Consumptive Use on the R9 Ranch

WATER PACK CONSULTANT PRESENTATION

ANDREW KELLER, PHD, P.E. KELLER-BLIESNER ENGINEERING, LLC

HAYS-DWR PUBLIC MEETING
JUNE 21, 2018 - GREENSBURG, KANSAS

Cause for Concern

- Groundwater levels in R9 Ranch vicinity are declining
 - ▶ Despite reduction in pumping on the Ranch
- Spatial analysis and water budget show historical groundwater storage declines
- Not sustainable
- Any increase in water consumption will further stress the finite water resource

Groundwater Level Trends

Placement of Wells On and Surrounding R-9 Ranch

Water Levels Measured by KGS, DWR, and GMD#5

Historical Water Levels of Wells in and around R-9 Ranch 1995-2016

Historical Water Levels of Wells in and around R-9 Ranch 1995-2016

R-9 Water Usage

Historical Water Usage on R-9 Ranch 1995 - 2014

Spatial Analysis of Water Levels

Middle Arkansas River Subbasin, R9 Ranch, and 521 Wells

Change in depth-towater in feet from 2001 to 2016 clipped to the R9 Ranch boundary

Mean decline of 7.9 feet in 15 years (0.53 ft/y) nearly double the average decline for the Middle Arkansas over the same period and six times the subbasin mean decline for 1988 to 2001.

R9 Ranch Consumptive Use Analysis

Basis for R9 Ranch Consumptive Use Analysis Criteria for change in use- Net consumptive use (CU) must not be greater than original irrigation net CU (K.A.R. 5-5-9 (a))

If unrealistic then site-specific net consumptive use analysis (K.A.R. 5-5-9 (c))

METRIC evapotranspiration (ET) analysis using 1984-1985 satellite imagery and 30-year climatology

Rules and Regulations Kansas Water Appropriation Act April, 2014

- **Kansas Administrative Regulations (K.A.R.) 5-5-9**: Criteria for change in use from irrigation to any other type of beneficial water use
 - K.A.R. 5-5-9 (a): Net consumptive use (CU) must not be greater than original irrigation net CU
 - Maximum annual quantity of water shall be the net irrigation requirement (NIR) for the 50% chance rainfall for the county of origin, as set forth in K.A.R. 5-5-12, multiplied by the maximum acreage legally irrigated under the authority of the water right in any one calendar year during the perfection period.
 - K.A.R. 5-5-12 NIR for 50% chance rainfall = 13 inches = 1.08 feet
 - K.A.R. 5-5-9 (c): If quantity by K.A.R. 5-5-9 (a) appears unrealistic or could impair other water rights the chief engineer shall make a site-specific net consumptive use analysis.
 - This is the basis for the R9 Ranch site-specific net consumptive use analysis we conducted for Water PACK

R9 Ranch CU not on par with other irrigated properties in Edwards County

Sporadic farming history

Very low water-holding capacity soils

Irrigation Net Consumptive Use

Actual evapotranspiration (ET) with irrigation minus effective precipitation

Effective precipitation will be greater under post-transfer dryland/natural grassland conditions than under pre-transfer irrigated conditions

Evapotranspiration Calculation for R9 Ranch Irrigation

- ➤ 30-year (1980-2009) average
- Alfalfa and grain corn ET under reference conditions near Kinsley
- Quality-controlled, daily climate data from Dodge City and Kinsley
- ASCE standard method recognized by SCOTUS in Kansas vs Colorado
- Adjusted for R9 Ranch actual ET conditions
 - Using METRIC ET mapping
 - ▶ 1984 and 1985 (perfection period) Landsat satellite data

ETrF Map from METRIC Model for Aug 13, 1984 Landsat 5 row 29 path 34

ETrF Map for the R9 Ranch from METRIC Model for May 25, 1984 Landsat 5 row 29 path 34

Net Transferable CU Results

Alfalfa

- ► ETc = 46.0 inch
- ▶ Mean ETrF = 0.72
- \blacktriangleright ETa = 46.0 x 0.72 = 33.1 inch
- ▶ 50% Prob. Eff. Precip. = 15.4 inch
- ightharpoonup N.I.R. = 33.1 15.4 = 17.7 inch
- ► Grassland CU of Precip = 21.1 inch
- ► Net Change CU = 33.1 21.1 = **12.0 inch**

Grain Corn

- ► ETC = 35.9 inch
- ▶ Mean ETrF = 0.72
- ► ETa = 35.9 x 0.72 = 25.8 inch
- ▶ 50% Prob. Eff. Precip. = 12.2 inch
- ► N.I.R. = 25.8 12.2 = 13.6 inch
- ► Grassland CU of Precip = 21.1 inch
- ► Net Change CU = 25.8 21.1 = **4.7 inch**

Total Net Transferable CU for R9 Ranch

Alfalfa

- ► Net Change CU = 12.0 inch = 1.00 ft
- 2,901 acre alfalfa x 1.00 ft = 2,901 AF

Grain Corn

- ► Net Change CU = 4.7 inch = 0.40 ft
- 2,247 acre corn x 0.40 ft = 889 AF

Maximum transferable water by net consumptive use analysis from drying up irrigation on the R9 Ranch = 2,901 AF + 889 AF = 3,790 AF

In summary

- Groundwater levels in R9 Ranch vicinity are declining despite reduction in Ranch pumping
- Not sustainable
- Any increase in water consumption will cause further stress
- Hays has right to use its water according to Kansas Administrative Regulations (K.A.R.)
- K.A.R. Criteria for change in use: no increase in net CU
- K.A.R. allows for site-specific net CU analysis
- Site-specific net CU analysis of R9 Ranch indicates maximum change in use volume of 3,790 AF per year

Thank you

